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ABSTRACT

The backward nonlinear local Lyapunov exponent method (BNLLE) is applied to quantify the predictability of warm
and  cold  events  in  the  Lorenz  model.  Results  show  that  the  maximum  prediction  lead  times  of  warm  and  cold  events
present  obvious  layered  structures  in  phase  space.  The  maximum  prediction  lead  times  of  each  warm  (cold)  event  on
individual  circles  concentric  with  the  distribution  of  warm  (cold)  regime  events  are  roughly  the  same,  whereas  the
maximum prediction lead time of events on other circles are different. Statistical results show that warm events are more
predictable than cold events.
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Article Highlights:

•  A new method is introduced to quantify predictabilities of warm and cold events, and gives their algorithms.
•  Statistical results indicate that warm events are more predictable than cold events.

 

 
 

1.    Introduction

Warm and cold events are closely related to the develop-
ment  of  human  society.  These  events  influence  people’s
choices  about  the  way they  live  their  lives.  Extreme warm
and  cold  events  can  cause  great  damage  to  a  society.  The
accuracy of forecasts of warm and cold events thus receives
much  attention.  However,  the  chaotic  nature  of  the  atmo-
sphere makes generating accurate long-term forecasts a chal-
lenging  task.  Since  the  pioneering  work  of Thompson
(1957) and Lorenz (1963), much research has been conduc-
ted on the predictability of weather and climate (e.g., Mu et

al., 2009; Weisheimer et al., 2011; Duan et al., 2013; Li and
Ding,  2013; Duan  and  Hu,  2016; Lavaysse  et  al.,  2019).
However, whether warm and cold events are similarly predict-
able remains unknown. Islam et  al.  (1993) and Snyder and
Zhang  (2003) suggested  that  initial  condition  errors  grow
more rapidly in a warm environment, leading to lower predict-
ability than in a cold environment. Other studies have indic-
ated that warm events have a higher upper limit of predictabil-
ity than cold events (e.g., Reynolds et al., 1994; Carbone et
al., 2002).

Previous  studies  have  considered  the  predictability  of
warm and  cold  events  from both  qualitative  and  quantitat-
ive perspectives (e.g. Leith, 1978; Chen et al.,  1995; Dam-
bacher  et  al.,  2003; Tang et  al.,  2008; Li  and Ding,  2011).
Quantitative estimations of the predictabilities of warm and
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cold events are at the frontier of climate science. Some early
studies employed an error doubling-time method to determ-
ine  the  limit  of  atmospheric  predictability.  In  this  method,
the  predictability  limit  is  defined  as  the  time  required  for
small initial errors to double in size (Leith, 1965; Charney,
1966; Mintz,  1968; Smagorinsky,  1969; Lorenz,  1982).
However,  some  researchers  have  pointed  out  that  this
method  is  affected  by  the  numerical  model  being  assessed
(e.g., Lorenz,  1996),  and the error doubling time decreases
for numerical models with greater complexity and higher res-
olution. Dalcher and Kalnay (1987) proposed the saturation
of the root-mean-square error as an indicator of predictabil-
ity.  However,  this  method  also  depends  on  the  numerical
model being employed. Model deficiencies have limited the
widespread application of the above methods. In addition to
these  methods,  the  global  Lyapunov  exponent  (Eckmann
and Ruelle, 1985; Wolf et al., 1985; Fraedrich, 1986, 1987)
and local Lyapunov exponent methods (Nese, 1989; Yoden
and Nomura, 1993; Ziehmann et al.,  2000) have been used
to quantitatively estimate the limit of atmospheric predictabil-
ity.  However,  these  two  methods  assume  linear  error
growth,  whereas  the  atmosphere  is  a  chaotic  system  for
which error growth is affected by nonlinear processes. This
makes  existing  methods  less-than-ideal  for  predictability
assessments  (Mu  et  al.,  2003). Ding  and  Li  (2007) intro-
duced  the  nonlinear  local  Lyapunov  exponent  (NLLE)
method  to  estimate  the  predictability  limits  of  the  atmo-
sphere. This method accounts for nonlinearity and provides
more  accurate  estimates  of  predictability  limits  than  meth-
ods  based  on  the  theory  of  linear  error  growth.  However,
this  method  cannot  provide  the  maximum  prediction  lead
time  for  specific  states.  Following  the  work  of Ding  et  al.
(2008), Li  et  al.  (2019) proposed  the  backward  nonlinear
local Lyapunov exponent (BNLLE) method to estimate the
maximum  prediction  lead  time  of  specific  states.  The
BNLLE  method  differs  from  traditional  methods,  which
quantify  the  prediction  time  from  a  given  initial  state  to  a
future state. It can estimate the prediction lead time of a spe-
cific state. Hence, the BNLLE method is particularly suited
to investigations of the predictability of extreme events. The
BNLLE method introduces  a  new means  by  which  model-
ers who employ general circulation models can study the pre-
dictability  of  extreme  events.  Apart  from  the  BNLLE
method,  previous  studies  (Mu  et  al.,  2002; Duan  and  Mu,
2005; Duan and Luo, 2010) have estimated the maximum pre-
diction lead time of events based on the conditional nonlin-
ear optimal perturbation (CNOP) method.

This work applies the BNLLE method to an estimation
of  the  maximum  prediction  lead  times  of  warm  and  cold
events. The relative difficulties in predicting warm and cold
events  are  explored  by  comparing  the  predictability  limits
obtained  using  the  BNLLE  method.  The  remainder  of  this
paper  is  organized  as  follows.  Section  2  introduces  the
model  and  the  BNLLE  method.  A  quantitative  estimation
and  comparison  of  the  predictabilities  of  warm  and  cold
events are presented in section 3. Finally, section 4 provides

a summary of the results.

2.    Model and methodology

2.1.    Model setup

Lorenz (1963) introduced a simplified model (hereafter
referred to as Lorenz63) that applies three ordinary differen-
tial equations [Eq. (1)] to study atmospheric predictability:  

ẋ = −σ (x− y)
ẏ = −xz+ rx− y
ż = xy−bz

, (1)

σ b

y z

where , r and  are constants set to 10, 28 and 8/3, respect-
ively,  and  lead  to  the  chaotic  behavior  of  the  Lorenz63
model. x,  and  in  equation  (1)  are  three  variables  of
Lorenz63 model. The Lorenz63 model is a simple representa-
tion of the atmosphere and has been widely used in climate
science (e.g., Mukougawa et al., 1991; Palmer, 1993; Evans
et al.,  2004; Feng et al.,  2014). We use an integration time
step  of  0.05  time  units  and  a  fourth-order  Runge−Kutta
scheme to  integrate  the  model  over  45 000 steps.  The first
5000  steps  are  used  as  spin-up,  and  the  remaining  40  000
modeled states are used in the analysis.

2.2.    Backward  nonlinear  local  Lyapunov  exponent
method

δ(t0)
In  an n-dimensional  nonlinear  dynamical  system,  the

growth  of  infinitesimal  initial  errors  can  be  described
as 

δ(t0+τ) = η(x(t0),δ(t0), τ)δ(t0) , (2)

η(x(t0),δ(t0), τ)
δ(t0) x(t0)

δ(t0+τ) t0+τ τ

where  is  a  nonlinear  operator  that  controls
the growth of initial  errors ,  represents the initial
state,  denotes the errors at time , and  is the
integration time. The NLLE is defined as 

λ (x (t0) ,δ (t0) , τ) =
1
τ

ln
∥δ(t0+τ)∥
∥δ(t0)∥ . (3)

τ

τ

The  NLLE  captures  the  nonlinear  growth  of  initial
errors, which represents an advantage over traditional meth-
ods  used  to  study  the  predictability  of  the  atmosphere,
which consider only linear error growth. To quantify the pre-
dictability of state x(t0) in a chaotic system, several error vec-
tors  (Fig.  1)  are  first  superimposed  onto x(t0).  Then,  the
error  vectors  are  allowed  to  evolve  in  each  direction  over
time .  The  NLLEs  in  each  direction  are  then  calculated
using Eq. (3). The average nonlinear growth rate over a pre-
scribed time  is thus given by 

λ̄ (x (t0) , τ) = ⟨λ (x (t0) ,δ (t0) , τ)⟩N , (4)

⟨⟩Nwhere  represents  the  local  ensemble  mean  of  samples.
The number of samples is N. The average growth of the ini-
tial errors is calculated as 
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Ē (x (t0) , τ) = exp
(
λ̄ (x (t0) , τ)τ

)
. (5)

Ē (x (t0) , τ)

In  climate  science,  the  local  predictability  limit  of  a
single state x(t0) can be represented by the time taken by ini-
tial  errors  to  reach saturation.  When the  error  saturates,  all
information of the initial state x(t0), along with predictabil-
ity, is lost. Thus, the local predictability limit can be determ-
ined once  reaches saturation. The local predictabil-
ity limit estimated by the NLLE method is the length of the
longest possible prediction from initial state x(t0). Thus, the
NLLE method cannot provide the maximum prediction lead
time for the final state x(t0).

t−m t−1 t0
t0

t−m

t−m

t−m

t0 t−m

t0

To estimate the maximum prediction lead time for spe-
cific  final  states, Li  et  al.  (2019) proposed  the  BNLLE
method, which is based on the NLLE method. Assume a set
of  time series  data [ x( ),  … x( ), x( )].  To obtain the
maximum prediction lead time for state x( ), the correspond-
ing initial state x( ) needs to be determined first. The corres-
ponding  initial  state x( )  must  meet  one  condition:  that
errors superimposed on x( ) evolve to saturate exactly at
time . When the initial state x( ) is determined, the max-
imum prediction lead time of state x( ) is calculated as 

T = t0− t−m . (6)

t0
t0

t0

t1 t0
t1− t0

t0

Unlike the NLLE method, the BNLLE method is used
to  calculate  the  maximum  prediction  lead  time  of  given
states by backward searches for corresponding initial states.
Figure  2 shows  the  maximum  prediction  time  and  max-
imum prediction lead time for state x( ). To quantify the pre-
diction time of state x( ), the initial errors are first superim-
posed on state x( ). Then, the growth of the initial errors is
assessed.  If  the  initial  errors  grow  to  reach  saturation
exactly at time , then the prediction time of state x( ) can
be  estimated  as ,  which  represents  the  longest  effect-
ive  forecast  time  from  state x( ).  To  quantify  the  predic-

t0
x (t−1)

t0
t0

t0 t0− t−1

t0

tion lead time of state x( ), the initial errors are first superim-
posed on the previous state . Then, the growth of the ini-
tial errors to time  is evaluated. If the initial errors reach sat-
uration at time , then the maximum prediction lead time of
state x( ) is estimated as , which denotes the longest
predictable  time leading to  state x( ).  Therefore,  the  max-
imum  prediction  lead  time  and  the  maximum  prediction
time are two different measures of predictability of the same
state.  The  NLLE  method  quantifies  the  maximum  predic-
tion time and the BNLLE method quantifies  the maximum
prediction lead time. The study of the predictability of spe-
cific  states  or  events  involves  determination  of  the  max-
imum  prediction  lead  time  for  specific  states.  Thus,  we
apply the BNLLE method to quantify the predictabilities of
warm and cold events.

3.    Results

3.1.    Definition of warm and cold events

t−m

Evans  et  al.  (2004) classified  the  Lorenz  attractor  into
warm  and  cold  regimes,  and  studied  when  regime  change
occurs  and  the  time  spent  in  one  regime.  Warm  and  cold
regimes  represent  warm  and  cold  weather,  respectively,  in
the  real  atmosphere. Figure  3 shows  the  warm  and  cold
regimes of the Lorenz attractor projected on the x−y plane.
For  the  warm  regime, x and y are  both  greater  than  zero,
whereas for the cold regime x and y are both less than zero.
States corresponds to weather events. Of the 40 000 states,
there  are  17  292  states  in  the  warm  regime  (i.e.,  warm
events)  and  18  534  states  in  the  cold  regime  (i.e.,  cold
events).  The  other  4174  states  are  in  the  regime  transition
region.  In  this  work,  we  generate  10  000  initial  error  vec-
tors  randomly  superimposed  on  each  state x( ),  and  the
magnitudes of these initial error vectors are the same but in

 

 

x (t0)
x (t0)

Fig.  1.  Example  of  20  error  vectors  superimposed  on  the  initial  state .
The red dot represents the initial state , and the lines connecting the red and
black dots represent the error size. The magnitude of the error vectors is 10−5.
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different directions.

3.2.    Maximum  prediction  lead  times  of  warm  and  cold
states

The  initial  error  magnitude  of  the  Lorenz63  model  is
set to 10−5. We then calculate the maximum prediction lead

√
β(r−1),

√
β(r−1),r−1

−
√
β(r−1),−

√
β(r−1),r−1

times for all 40 000 events. Figure 4 shows the spatial distri-
butions  of  maximum  prediction  lead  times  on  the  Lorenz
attractor. Warm events are distributed over the right wing of
the Lorenz attractor and cold events are distributed over the
left wing. The maximum prediction lead times of warm and
cold  events  present  obvious  layered  structures.  The  max-
imum prediction lead times of warm (cold) events on indi-
vidual  circles  concentric  with  the  distribution  of  warm
(cold) events are roughly the same. On different circles, the
maximum  prediction  lead  times  are  different.  In  addition,
we  find  that  the  maximum  prediction  lead  times  of  warm
and cold  events  are  similar  overall,  with  small  differences.
In this work, the parameter r is 28 which is larger than 1. So
the  Lorenz  attractor  has  three  unstable  stationary  points
(Mukougawa et al., 1991, Mu et al., 2002). One unstable sta-
tionary point is the origin (0, 0, 0). The other two unstable sta-
tionary points are located on ( ) and
( ),  which  are  the  centers  of
warm  and  cold  regimes,  respectively.  The  warm  (cold)
events on an individual orbit are circled around the unstable
stationary point on the warm (cold) regime. In our opinion,
the properties of  all  the events on an individual  circle may
be  the  same,  indicating  similar  predictabilities  of  these

 

 

x (t0) t0
x (t0)

x (t0) t−1

x (t−1)

Fig.  2.  Schematic  of  the  maximum  prediction  lead  time  (dashed  line)  and
maximum  prediction  time  (solid  line)  for  state  where  is  the  time
associated  with  given state , t1 is  the  time required  for  the  initial  errors
superimposed on  to reach saturation, and  is the time associated with
the corresponding initial state .

 

Fig.  3.  Warm  (red)  and  cold  (blue)  regimes  projected  on  the
x−y plane of a Lorenz attractor.

 

 

Fig. 4. Spatial distributions of maximum prediction lead times for warm and
cold regimes with initial error magnitudes of 10−5.
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events. So, the maximum prediction lead times of events on
an individual circle are similar. Nese (1989) pointed out that
the predictabilities of states vary with the phase space of the
Lorenz  attractor.  Therefore,  the  predictabilities  of  events
vary  with  different  circles.  Taking  account  of  the  two
factors—the  same  properties  of  events  on  an  individual
circle  and  predictabilities  varying  with  circles—the  max-
imum prediction lead times of warm and cold events present
obvious layered structures.

3.3.    Comparison  of  maximum  prediction  lead  times  of
warm and cold states

To further investigate which type of event is more predict-
able, we apply statistical information for the maximum predic-
tion lead times of warm and cold events (Table 1). Figure 5
is  a  boxplot  of  maximum  prediction  lead  times  for  warm
and  cold  events.  The  largest  of  the  maximum  prediction
lead times of the 17 292 warm events is slightly lower than
that of the 18 534 cold events. The other four statistical vari-
ables  [the  first  quartile  (Q1),  median  value  (Q2),  the  third
quartile  (Q3),  and  minimum value]  of  warm events  are  all

higher  than  those  of  the  cold  events,  indicating  that  warm
events are more predictable than cold events.

Figure 6 shows probability histograms of maximum pre-
diction lead times of the two types of event under two scen-
arios with different initial error magnitudes. The maximum

Table 1.   Statistical information for the maximum prediction lead
times of warm and cold events.

Minimum Q1 Median Q3 Maximum

Warm 10.99 12.94 13.61 14.24 16.19
Cold 10.02 12.42 13.29 14.02 16.42

 

Fig. 5. Boxplot of the maximum prediction lead time of warm
and cold events with initial error magnitudes of 10−5. Red solid
lines indicate the median value (Q2). The bottoms and tops of
the boxes denote the first quartile (Q1) and third quartile (Q3),
respectively.  The  lower  and  upper  solid  horizontal  lines
represent  the  minimum  value  (Q1  −  1.5IQR)  and  maximum
value (Q3 + 1.5IQR) of the maximum prediction lead times of
warm (cold) events, respectively, and IQR = Q3 − Q1.

 

 

Fig. 6. Probability histograms for maximum prediction lead times of (a, c) cold and (b, d) warm events with
initial error magnitudes of (a, b) 10−2 and (c, d) 10−5.
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prediction  lead  times  of  warm  and  cold  events  both  form
Gaussian  distributions.  Extreme  warm  and  cold  events
occur with low frequency, and thus extreme maximum predic-
tion  lead  times  are  of  low  probability.  For  non-extreme
events,  the probabilities  of  maximum prediction lead times
for  warm  events  are  generally  higher  than  those  of  cold
events.

Figure 7 shows probability distribution function (PDF)
curves  of  maximum  prediction  lead  times  for  warm  and
cold events. For both magnitudes of initial error, the probabil-
ity  distributions  of  maximum  prediction  lead  times  for
warm  events  are  shifted  to  longer  times  compared  with
those  for  cold  events.  The  maximum prediction  lead  times
of  warm  events  are  thus  greater  than  those  of  cold  events
with  the  same  probability.  This  demonstrates  that  warm
events are more predictable than cold events.

4.    Summary

We  apply  the  BNLLE  method  to  quantify  the  max-
imum  prediction  lead  times  of  warm  and  cold  events  in  a
Lorenz attractor.  The BNLLE method accounts  for  nonlin-
ear  effects  on error  growth,  which represents  an advantage
over traditional methods that assume linear error growth. Res-
ults demonstrate that the maximum prediction lead times of
the two types of event present obvious layered structures in
the phase space of the Lorenz system. The maximum predic-
tion lead times of  warm (cold)  events  on individual  circles
concentric  with  the  distribution  of  warm  (cold)  events  are
roughly  the  same.  However,  the  maximum  prediction  lead
times  on  different  circles  are  different.  The  properties  of
events on an individual orbit may be similar, resulting in sim-
ilar predictability limits of these events. Because predictabil-
ity  varies  with  the  phase  space  of  the  Lorenz  attractor
(Nese, 1989), the predictability limits of events on different
circles are different. Therefore, considering the two factors,
the  maximum  prediction  lead  times  of  warm  and  cold
events present obvious layered structures. We also investig-
ate which type of event is more predictable.  Statistical res-

ults indicate that the Q1, median (Q2), Q3, and minimum of
the  maximum  prediction  lead  times  of  warm  events  are
higher  than  those  of  cold  events.  The  distribution  of  max-
imum prediction lead times for both types of event are Gaus-
sian with a low occurrence of extreme events. According to
the  probability  distributions  of  maximum  prediction  lead
times  for  warm  and  cold  events,  regardless  of  the  mag-
nitude  of  the  initial  error,  the  maximum  prediction  lead
times  of  warm  events  are  generally  higher  than  those  of
cold  events.  Therefore,  warm  events  are  more  predictable
than cold events.

The  atmosphere  is  a  complex  chaotic  system.  Warm
and cold weather and climate events in the real atmosphere
are  more  complex  than  those  in  the  Lorenz63  model.  In
future  work,  we  will  apply  the  BNLLE method  to  the  real
atmosphere and further explore the relative difficulty of fore-
casts of warm and cold weather and climate events.

Acknowledgements.    This work was jointly supported by the
National  Natural  Science  Foundation  of  China  (Grant  No.
41790474)  and  the  National  Program  on  Global  Change  and
Air−Sea Interaction (GASI-IPOVAI-03 GASI-IPOVAI-06).

REFERENCES
 

Carbone,  R.  E.,  J.  D.  Tuttle,  D.  A.  Ahijevych,  and  S.  B.  Trier,
2002: Inferences of predictability associated with warm sea-
son  precipitation  episodes. J.  Atmos.  Sci., 59,  2033−2056,
https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>
2.0.CO;2. 

Charney,  J.  G, 1966: The feasibility of a global  observation and
analysis  experiment. Bull.  Amer.  Meteorol.  Soc., 47,
200−221, https://doi.org/10.1175/1520-0477-47.3.200.

 

Chen,  D.  K.,  S.  E.  Zebiak,  A.  J.  Busalacchi,  and  M.  A.  Cane,
1995: An improved procedure for EI Niño forecasting: Implic-
ations  for  predictability. Science, 269,  1699−1702,
https://doi.org/10.1126/science.269.5231.1699. 

Dalcher,  A.,  and E. Kalnay, 1987: Error growth and predictabil-
ity in operational ECMWF forecasts. Tellus A, 39, 474−491,
https://doi.org/10.3402/tellusa.v39i5.11774. 

Dambacher, J. M., H. W. Li, and P. A. Rossignol, 2003: Qualitat-

 

 

Fig. 7. PDF curves of maximum prediction lead times for warm and cold events with initial error magnitudes
of (a) 10−2 and (b) 10−5. Blue and red lines represent cold and warm states, respectively.

956 PREDICTABILITIES OF WARM AND COLD EVENTS VOLUME 37

 

  

https://doi.org/10.1175/1520-0469(2002)059%3C2033:IOPAWW%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059%3C2033:IOPAWW%3E2.0.CO;2
https://doi.org/10.1175/1520-0477-47.3.200
https://doi.org/10.1126/science.269.5231.1699
https://doi.org/10.3402/tellusa.v39i5.11774
https://doi.org/10.1175/1520-0469(2002)059%3C2033:IOPAWW%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059%3C2033:IOPAWW%3E2.0.CO;2
https://doi.org/10.1175/1520-0477-47.3.200
https://doi.org/10.1126/science.269.5231.1699
https://doi.org/10.3402/tellusa.v39i5.11774


ive predictions in model ecosystems. Ecological Modelling,
161,  79−93, https://doi.org/10.1016/S0304-3800(02)00295-
8. 

Ding, R. Q.,  and J.  P.  Li,  2007: Nonlinear finite-time Lyapunov
exponent  and  predictability. Physics  Letters  A, 364,
396−400, https://doi.org/10.1016/j.physleta.2006.11.094. 

Ding, R. Q., J. P. Li, and H. A. Kyung-Ja, 2008: Nonlinear local
Lyapunov  exponent  and  quantification  of  local  predictabil-
ity. Chinese Physics Letters, 25, 1919−1922, https://doi.org/
10.1088/0256-307X/25/5/109. 

Duan, W. S., and M. Mu, 2005: Applications of nonlinear optimiza-
tion  methods  to  quantifying  the  predictability  of  a  numer-
ical model for El Nino-Southern Oscillation. Progress in Nat-
ural  Science, 15,  915−921, https://doi.org/10.1080/1002007
0512331343110. 

Duan, W. S., and H. Y. Luo, 2010: A new strategy for solving a
class of constrained nonlinear optimization problems related
to  weather  and  climate  predictability. Adv.  Atmos.  Sci., 27,
741−749, https://doi.org/10.1007/s00376-009-9141-0. 

Duan, W. S., and J. Y. Hu, 2016: The initial errors that induce a sig-
nificant  "spring  predictability  barrier"  for  El  Niño  events
and  their  implications  for  target  observation:  Results  from
an  earth  system  model. Climate  Dyn., 46,  3599−3615,
https://doi.org/10.1007/s00382-015-2789-5. 

Duan, W. S., R. Q. Ding, and F. F. Zhou, 2013: Several dynam-
ical  methods  used  in  predictability  studies  for  numerical
weather forecasts and climate prediction. Climatic and Envir-
onmental  Research, 18,  524−538, https://doi.org/10.3878/j.
issn.1006-9585.2012.12009.  (in  Chinese  with  English
abstract) 

Eckmann, J. P., and D. Ruelle, 1985: Ergodic theory of chaos and
strange attractors. Reviews of Modern Physics, 57, 617−656,
https://doi.org/10.1103/RevModPhys.57.617. 

Evans,  E.,  N.  Bhatti,  J.  Kinney,  L.  Pann,  P.  Malaquias,  S.  C.
Yang, E. Kalnay, and J. Hansen, 2004: RISE: Undergraduates
find that regime changes in Lorenz's model are predictable.
Bull.  Amer.  Meteorol.  Soc., 85,  520−524, https://doi.org/
10.1175/BAMS-85-4-520. 

Feng, J., R. Q. Ding, D. Q. Liu, and J. P. Li, 2014: The applica-
tion of nonlinear local Lyapunov vectors to ensemble predic-
tions  in  Lorenz  systems. J.  Atmos.  Sci., 71,  3554−3567,
https://doi.org/10.1175/JAS-D-13-0270.1. 

Fraedrich, K., 1986: Estimating the dimensions of weather and cli-
mate attractors. J. Atmos. Sci., 43,  419−432, https://doi.org/
10.1175/1520-0469(1986)043<0419:ETDOWA>2.0.CO;2. 

Fraedrich, K., 1987: Estimating weather and climate predictabil-
ity on attractors. J. Atmos. Sci., 44, 722−728, https://doi.org/10.
1175/1520-0469(1987)044<0722:EWACPO>2.0.CO;2. 

Islam, S., R. L. Bras, and K. A. Emanuel, 1993: Predictability of
mesoscale  rainfall  in  the  tropics. J.  Appl.  Meteorol., 32,
297−310, https://doi.org/10.1175/1520-0450(1993)032<0297:
POMRIT>2.0.CO;2. 

Lavaysse,  C.,  G.  Naumann,  L.  Alfieri,  P.  Salamon,  and J.  Vogt,
2019:  Predictability  of  the  European  heat  and  cold  waves.
Clim. Dyn., 52, 2481−2495, https://doi.org/10.1007/s00382-
018-4273-5. 

Leith, C.,  1965: Numerical simulation of the earth's atmosphere.
Methods in Computational Physics, Academic Press, 1−28. 

Leith,  C.  E.,  1978:  Predictability  of  climate. Nature, 276,
352−355, https://doi.org/10.1038/276352a0. 

Li, J. P., and R. Q. Ding, 2011: Temporal−spatial distribution of
atmospheric predictability limit by local dynamical analogs.

Mon.  Wea.  Rev., 139,  3265−3283, https://doi.org/10.1175/
MWR-D-10-05020.1. 

Li,  J.  P.,  and R. Q. Ding,  2013: Temporal-spatial  distribution of
the predictability limit of monthly sea surface temperature in
the global oceans. International Journal of Climatology, 33,
1936−1947, https://doi.org/10.1002/joc.3562. 

Li, X., R. Q. Ding, and J. P. Li, 2019: Determination of the back-
ward  predictability  limit  and  its  relationship  with  the  for-
ward  predictability  limit. Adv.  Atmos.  Sci., 36,  669−677,
https://doi.org/10.1007/s00376-019-8205-z. 

Lorenz,  E.  N.,  1963:  Deterministic  nonperiodic  flow. J.  Atmos.
Sci., 20,  130−141, https://doi.org/10.1175/1520-0469(1963)
020<0130:DNF>2.0.CO;2. 

Lorenz, E. N., 1982: Atmospheric predictability experiments with
a large numerical model. Tellus, 34, 505−513, https://doi.org/
10.1111/j.2153-3490.1982.tb01839.x. 

Lorenz,  E.  N.,  1996:  Predictability:  A  problem  partly  solved.
Proc.  ECMWF  Seminar  on  Predictability,  Vol.  I,  Reading,
United Kingdom, ECMWF, 1−18. 

Mintz, Y., 1968: Very long-term global integration of the primit-
ive equations of atmospheric motion: An experiment in cli-
mate simulation. Causes of Climatic Change, D. E. Billings
et  al.,  Eds.,  Springer,  20−36, https://doi.org/10.1007/978-1-
935704-38-6_3. 

Mu,  M.,  W.  S.  Duan,  and  J.  C.  Wang,  2002:  The  predictability
problems in numerical weather and climate prediction. Adv.
Atmos.  Sci., 19,  191−204, https://doi.org/10.1007/s00376-
002-0016-x. 

Mu, M., W. S. Duan, and B. Wang, 2003: Conditional nonlinear
optimal  perturbation  and  its  applications. Nonlinear  Pro-
cesses  in  Geophysics, 10,  493−501, https://doi.org/10.5194/
npg-10-493-2003. 

Mu, M., F. F. Zhou, and H. L. Wang, 2009: A method for identify-
ing the sensitive areas in targeted observations for tropical cyc-
lone prediction: Conditional nonlinear optimal perturbation.
Mon.  Wea.  Rev., 137,  1623−1639, https://doi.org/10.1175/
2008MWR2640.1. 

Mukougawa, H., M. Kimoto, and S. Yoden, 1991: A relationship
between local error growth and quasi-stationary states: Case
study in the Lorenz system. J.  Atmos.  Sci., 48,  1231−1237,
https://doi.org/10.1175/1520-0469(1991)048<1231:ARBLEG>
2.0.CO;2. 

Nese,  J.  M.,  1989:  Quantifying  local  predictability  in  phase
space. Physica  D:  Nonlinear  Phenomena, 35,  237−250,
https://doi.org/10.1016/0167-2789(89)90105-X. 

Palmer, T. N., 1993: Extended-range atmospheric prediction and
the  Lorenz  model. Bull.  Amer.  Meteorol.  Soc., 74,  49−66,
https://doi.org/10.1175/1520-0477(1993)074<0049:ERAPAT>
2.0.CO;2. 

Reynolds,  C.  A.,  P.  J.  Webster,  and  E.  Kalnay,  1994:  Random
error  growth  in  NMC’s  global  forecasts. Mon.  Wea.  Rev.,
122,  1281−1305, https://doi.org/10.1175/1520-0493(1994)
122<1281:REGING>2.0.CO;2. 

Smagorinsky,  J.,  1969:  Problems  and  promises  of  deterministic
extended range forecasting. Bull.  Amer.  Meteorol.  Soc., 50,
286−312, https://doi.org/10.1175/1520-0477-50.5.286. 

Snyder, C., and F. Q. Zhang, 2003: Assimilation of simulated Dop-
pler  radar  observations  with  an  ensemble  Kalman  filter.
Mon.  Wea.  Rev., 131,  1663−1677, https://doi.org/10.1175//
2555.1. 

Tang, Y. M., H. Lin, and A. M. Moore, 2008: Measuring the poten-
tial  predictability  of  ensemble  climate  predictions. J.  Geo-

SEPTEMBER 2020 LI ET AL. 957

 

  

https://doi.org/10.1016/S0304-3800(02)00295-8
https://doi.org/10.1016/S0304-3800(02)00295-8
https://doi.org/10.1016/j.physleta.2006.11.094
https://doi.org/10.1088/0256-307X/25/5/109
https://doi.org/10.1088/0256-307X/25/5/109
https://doi.org/10.1080/10020070512331343110
https://doi.org/10.1080/10020070512331343110
https://doi.org/10.1007/s00376-009-9141-0
https://doi.org/10.1007/s00382-015-2789-5
https://doi.org/10.3878/j.issn.1006-9585.2012.12009
https://doi.org/10.3878/j.issn.1006-9585.2012.12009
https://doi.org/10.1103/RevModPhys.57.617
https://doi.org/10.1175/BAMS-85-4-520
https://doi.org/10.1175/BAMS-85-4-520
https://doi.org/10.1175/JAS-D-13-0270.1
https://doi.org/10.1175/1520-0469(1986)043%3C0419:ETDOWA%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1986)043%3C0419:ETDOWA%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1987)044%3C0722:EWACPO%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1987)044%3C0722:EWACPO%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(1993)032%3C0297:POMRIT%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(1993)032%3C0297:POMRIT%3E2.0.CO;2
https://doi.org/10.1007/s00382-018-4273-5
https://doi.org/10.1007/s00382-018-4273-5
https://doi.org/10.1038/276352a0
https://doi.org/10.1175/MWR-D-10-05020.1
https://doi.org/10.1175/MWR-D-10-05020.1
https://doi.org/10.1002/joc.3562
https://doi.org/10.1007/s00376-019-8205-z
https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
https://doi.org/10.1111/j.2153-3490.1982.tb01839.x
https://doi.org/10.1111/j.2153-3490.1982.tb01839.x
https://doi.org/10.1007/978-1-935704-38-6_3
https://doi.org/10.1007/978-1-935704-38-6_3
https://doi.org/10.1007/s00376-002-0016-x
https://doi.org/10.1007/s00376-002-0016-x
https://doi.org/10.5194/npg-10-493-2003
https://doi.org/10.5194/npg-10-493-2003
https://doi.org/10.1175/2008MWR2640.1
https://doi.org/10.1175/2008MWR2640.1
https://doi.org/10.1175/1520-0469(1991)048%3C1231:ARBLEG%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1991)048%3C1231:ARBLEG%3E2.0.CO;2
https://doi.org/10.1016/0167-2789(89)90105-X
https://doi.org/10.1175/1520-0477(1993)074%3C0049:ERAPAT%3E2.0.CO;2
https://doi.org/10.1175/1520-0477(1993)074%3C0049:ERAPAT%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1994)122%3C1281:REGING%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1994)122%3C1281:REGING%3E2.0.CO;2
https://doi.org/10.1175/1520-0477-50.5.286
https://doi.org/10.1175//2555.1
https://doi.org/10.1175//2555.1
https://doi.org/10.1016/S0304-3800(02)00295-8
https://doi.org/10.1016/S0304-3800(02)00295-8
https://doi.org/10.1016/j.physleta.2006.11.094
https://doi.org/10.1088/0256-307X/25/5/109
https://doi.org/10.1088/0256-307X/25/5/109
https://doi.org/10.1080/10020070512331343110
https://doi.org/10.1080/10020070512331343110
https://doi.org/10.1007/s00376-009-9141-0
https://doi.org/10.1007/s00382-015-2789-5
https://doi.org/10.3878/j.issn.1006-9585.2012.12009
https://doi.org/10.3878/j.issn.1006-9585.2012.12009
https://doi.org/10.1103/RevModPhys.57.617
https://doi.org/10.1175/BAMS-85-4-520
https://doi.org/10.1175/BAMS-85-4-520
https://doi.org/10.1175/JAS-D-13-0270.1
https://doi.org/10.1175/1520-0469(1986)043%3C0419:ETDOWA%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1986)043%3C0419:ETDOWA%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1987)044%3C0722:EWACPO%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1987)044%3C0722:EWACPO%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(1993)032%3C0297:POMRIT%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(1993)032%3C0297:POMRIT%3E2.0.CO;2
https://doi.org/10.1007/s00382-018-4273-5
https://doi.org/10.1007/s00382-018-4273-5
https://doi.org/10.1038/276352a0
https://doi.org/10.1175/MWR-D-10-05020.1
https://doi.org/10.1175/MWR-D-10-05020.1
https://doi.org/10.1002/joc.3562
https://doi.org/10.1007/s00376-019-8205-z
https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
https://doi.org/10.1111/j.2153-3490.1982.tb01839.x
https://doi.org/10.1111/j.2153-3490.1982.tb01839.x
https://doi.org/10.1007/978-1-935704-38-6_3
https://doi.org/10.1007/978-1-935704-38-6_3
https://doi.org/10.1007/s00376-002-0016-x
https://doi.org/10.1007/s00376-002-0016-x
https://doi.org/10.5194/npg-10-493-2003
https://doi.org/10.5194/npg-10-493-2003
https://doi.org/10.1175/2008MWR2640.1
https://doi.org/10.1175/2008MWR2640.1
https://doi.org/10.1175/1520-0469(1991)048%3C1231:ARBLEG%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1991)048%3C1231:ARBLEG%3E2.0.CO;2
https://doi.org/10.1016/0167-2789(89)90105-X
https://doi.org/10.1175/1520-0477(1993)074%3C0049:ERAPAT%3E2.0.CO;2
https://doi.org/10.1175/1520-0477(1993)074%3C0049:ERAPAT%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1994)122%3C1281:REGING%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1994)122%3C1281:REGING%3E2.0.CO;2
https://doi.org/10.1175/1520-0477-50.5.286
https://doi.org/10.1175//2555.1
https://doi.org/10.1175//2555.1


phys.  Res.  Atmos., 113,  D04108, https://doi.org/10.1029/
2007jd008804. 

Thompson, P. D., 1957: Uncertainty of initial state as a factor in
the predictability of large scale atmospheric flow patterns. Tel-
lus, 9,  275−295, https://doi.org/10.1111/j.2153-3490.1957.
tb01885.x. 

Weisheimer,  A.,  F.  J.  Doblas-Reyes,  T.  Jung,  and T.  N. Palmer,
2011:  On  the  predictability  of  the  extreme  summer  2003
over Europe. Geophys. Res. Lett., 38, L05704, https://doi.org/
10.1029/2010GL046455. 

Wolf,  A.,  J.  B.  Swift,  H.  L.  Swinney,  and  J.  A.  Vastano,  1985:

Determining Lyapunov exponents from a time series. Phys-
ica D: Nonlinear Phenomena, 16,  285−317, https://doi.org/
10.1016/0167-2789(85)90011-9. 

Yoden, S., and M. Nomura, 1993: Finite-time Lyapunov stability
analysis  and its  application to atmospheric predictability. J.
Atmos.  Sci., 50,  1531−1543, https://doi.org/10.1175/1520-
0469(1993)050<1531:FTLSAA>2.0.CO;2. 

Ziehmann, C., L. A. Smith, and J. Kurths, 2000: Localized Lya-
punov exponents  and the prediction of  predictability. Phys-
ics  Letters  A, 271,  237−251, https://doi.org/10.1016/S0375-
9601(00)00336-4.

958 PREDICTABILITIES OF WARM AND COLD EVENTS VOLUME 37

 

  

https://doi.org/10.1029/2007jd008804
https://doi.org/10.1029/2007jd008804
https://doi.org/10.1111/j.2153-3490.1957.tb01885.x
https://doi.org/10.1111/j.2153-3490.1957.tb01885.x
https://doi.org/10.1029/2010GL046455
https://doi.org/10.1029/2010GL046455
https://doi.org/10.1016/0167-2789(85)90011-9
https://doi.org/10.1016/0167-2789(85)90011-9
https://doi.org/10.1175/1520-0469(1993)050%3C1531:FTLSAA%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1993)050%3C1531:FTLSAA%3E2.0.CO;2
https://doi.org/10.1016/S0375-9601(00)00336-4
https://doi.org/10.1016/S0375-9601(00)00336-4
https://doi.org/10.1029/2007jd008804
https://doi.org/10.1029/2007jd008804
https://doi.org/10.1111/j.2153-3490.1957.tb01885.x
https://doi.org/10.1111/j.2153-3490.1957.tb01885.x
https://doi.org/10.1029/2010GL046455
https://doi.org/10.1029/2010GL046455
https://doi.org/10.1016/0167-2789(85)90011-9
https://doi.org/10.1016/0167-2789(85)90011-9
https://doi.org/10.1175/1520-0469(1993)050%3C1531:FTLSAA%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1993)050%3C1531:FTLSAA%3E2.0.CO;2
https://doi.org/10.1016/S0375-9601(00)00336-4
https://doi.org/10.1016/S0375-9601(00)00336-4
https://doi.org/10.1029/2007jd008804
https://doi.org/10.1029/2007jd008804
https://doi.org/10.1111/j.2153-3490.1957.tb01885.x
https://doi.org/10.1111/j.2153-3490.1957.tb01885.x
https://doi.org/10.1029/2010GL046455
https://doi.org/10.1029/2010GL046455
https://doi.org/10.1016/0167-2789(85)90011-9
https://doi.org/10.1016/0167-2789(85)90011-9
https://doi.org/10.1175/1520-0469(1993)050%3C1531:FTLSAA%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1993)050%3C1531:FTLSAA%3E2.0.CO;2
https://doi.org/10.1016/S0375-9601(00)00336-4
https://doi.org/10.1016/S0375-9601(00)00336-4
https://doi.org/10.1029/2007jd008804
https://doi.org/10.1029/2007jd008804
https://doi.org/10.1111/j.2153-3490.1957.tb01885.x
https://doi.org/10.1111/j.2153-3490.1957.tb01885.x
https://doi.org/10.1029/2010GL046455
https://doi.org/10.1029/2010GL046455
https://doi.org/10.1016/0167-2789(85)90011-9
https://doi.org/10.1016/0167-2789(85)90011-9
https://doi.org/10.1175/1520-0469(1993)050%3C1531:FTLSAA%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1993)050%3C1531:FTLSAA%3E2.0.CO;2
https://doi.org/10.1016/S0375-9601(00)00336-4
https://doi.org/10.1016/S0375-9601(00)00336-4

